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Polarization stability of TE and TM waves in nonlinear planar waveguides

H.T. Tran, R. A. Sammut, and C. Pask
Department of Mathematics, University College, Australian Defence Force Academy, Canberra, Australia
(Received 18 October 1993)

By means of linear analysis, we analytically show that in nonlinear planar waveguiding structures, TE,
guided modes are stable to TM perturbations, and vice versa, TM, guided modes are stable to TE pertur-

bations.
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I. INTRODUCTION

The propagation of TE waves in nonlinear planar
waveguides has been the subject of extensive investiga-
tions in recent years [1-3]. Many device applications
have been proposed based on the power-dependent prop-
erties of these waveguides. The existing rich literature on
TE waves has been made possible mainly by the fact that
TE waves have only one electric-field component whose
governing equation is amenable to analytical solution.
TM waves have not enjoyed the same degree of attention
because of the presence of two electric-field components
which often require extensive numerical computation, al-
though several authors have recently addressed some as-
pects of stationary TM and coupled TE-TM propagation
[2,4].

In linear waveguides, all guided waves are implicitly
(and neutrally) stable. But in nonlinear waveguides, the
nonlinearity brings in, along with many potentially useful
features, an uncertainty, about whether a certain station-
ary state can propagate stably over a practically useful
distance. This crucial question of stability has been ad-
dressed by a number of authors in recent years [1-12].
But as far as we know, these investigations have not in-
cluded cases in which perturbations to a mode (or sta-
tionary wave) can be polarized in directions other than
that of the mode. The aim of the present paper is to
study the stability of a stationary wave in one type of po-
larization in the presence of perturbations in other polar-
izations, in waveguiding structures with planar geometry.
This is probably the first study on nonstationary charac-
teristics of guided waves having TM component. We
have found that a nonlinear TE mode, polarized in the y
direction, is not affected by small perturbations in the x-
and z-directions. In other words, if it is stable (or unsta-
ble) to small perturbations in its own polarization, then it
remains stable (or unstable) in the presence of perturba-
tions in all polarizations. A similar result has been found
for nonlinear planar TM guided waves.

We note that Shen, Stegeman, and Maradudin [5] have
investigated the possibility of controlling a weak TM
wave by a strong nonlinear TE wave but relied on the a
priori assumption that the strong TE wave is totally
unaffected by the weak TM wave. Boardman and Twar-
dowski [6] later relaxed the constraint on the relative
smallness of the TM component but again assumed that

1063-651X/94/49(4)/3524(4)/$06.00 49

the coupled TE-TM wave propagates in a stationary
manner. In addition to analytically proving that the as-
sumption used in Ref. [5] is indeed valid, the result of our
present work further indicates that it may also be possi-
ble to have the reverse situation, i.e., to control weak TE
waves by strong nonlinear TM waves.

II. BASIC EQUATIONS

We are studying planar structures which may consist
of several layers of Kerr-law materials. Guided waves
propagate in the z direction and are uniform in the y
direction, while the x axis is perpendicular to the layers.

In linear planar waveguide theory, if e; denotes any of
the e,, e,, e, components of the electric field E, then the
governing wave equation in the weak-guidance approxi-
mation can be written simply as (see, e.g., [3])

Le;=0, (1)
where
L=2iB—a—+~a—2—+(n2k2—Bz) )
9z 9x? L ’

ny is the linear refractive index, k is the free-space wave
number, and S is the propagation constant.

When one or more of the layers are nonlinear, the full-
vector wave equation has a general form

2
VXVXE—kznZLE=’;—PNL, 3)
0

where E is the electric-field vector, €, is the free-space
permittivity, and Py is the nonlinear polarization vec-
tor. When Py vanishes (as in a linear medium), Eq. (3)
reduces to (1) in the weak-guidance limit. It is well
known (see, e.g., [13]) that in a Kerr-law medium, the
(third-order) polarization Py is related to E through

Py = A[(E-E*)E+7(E-E)E*], ()

where 4 =6Y,,,, in the notation of Ref. [14], and =3,
1, or O for nonlinear mechanisms arising from molecular
orientation, nonresonant electronic response, or electros-
triction, respectively. In this paper, we are concerned
only with the case n=1.

If E has only one component (such as for TE waves),
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then Py « |E|%E, and Eq. (3) takes a simpler form
VXVXE—k*n}; E=0, (5)
with the Kerr refractive index ny; being given by
nk =n?+alE|?,

and a is a nonlinear coefficient. If E has all three com-

ponents e, e,, and e, in the x, y, and z directions, respec-

tively, then the expansion for Py; is

Py =A[PR R+ P I +PiL2], ()
where

PNe=3¢ le | te (le, 2+ e, D)+ Lef(el+el) M
Pl=1c,le,P+ey(le P +le, D+ e (e +el), @)
PNt =ic,le, | +e,(le, [P +]e )+ Lef(ef+ed) . )

We then assume that the first term of Eq. (5) can still
be replaced by — VZE, in the spirit of the weak-guidance
approximation. This is justified when it is recalled that
the scalar approximation is well-known to be a very good
approximation in most real waveguides, and that the non-
linear change of the refractive index in real materials is
often much less than 0.01 [15]. In the particular case of
TE waves, this replacement is exact without recourse to
the weak-guidance approximation.

III. TE GUIDED WAVES

We now consider a TE mode which is y polarized with
field E(x)expi(Bz —wt). Let e, be expressed as

e, =Ey(x)+8e,(x,2) , (10)

where e, is a small perturbation in the y polarization.
We also assume that e,, e, are small perturbations in the
x and z polarizations. In linear stability analysis, the fol-
lowing question is to be answered: with E(x) fixed and
€., de,, e, initially confined to small values, do these per-
turbations grow with propagation distance? If they do
then E is regarded as unstable. Otherwise, it is stable.

Now, from the above equations and assumptions, the
equations governing the small perturbations, to first or-
der, can be written as

L&e,+ak’Ej(28e,+8e)=0, (11)
Le;+1ak?E(2e;+e*)=0, (12)

where, here, e; denotes either e, or e,. In particular, Eq.
(11) does not involve e, and e,, and has been studied ex-
tensively in the context of purely TE perturbations
[9-12]. It has been shown that for TE; modes, growth
rates of TE perturbations in linear analysis can only be
real (i.e., the mode is unstable) or purely imaginary
(stable); while for higher-order TE modes, growth rates
can be complex [12], indicating a complicated structure
of stability regions in the parameter space. It should also
be mentioned that, for TE;, modes, the determination of
stability can be facilitated by a simple topological rule
provided that the stability at some particular set of pa-

rameters is known [16].

Of primary interest in the present study is how Eq.
(12), which differs from Eq. (11) only in the appearance of
the factor 1 in the last term, dictates the behavior of e,
and e,. It turns out that this simple factor plays a crucial
role in the stability analysis.

Following Ref. [9], e; can be the form

ej(x,2)=(u +v)exp(uz)+(u*—v*)exp(p*z),

where u,v are functions of x only, and u represents the
growth rate. Some straightforward algebra leads to fa-
miliar equations

Low=—iQu, Liu=—iQ, (13)
LoLyu=—Q%%, L Low=—0%, (14)
where

Ly=d*/dx*+(n}k*—p*)+Lak’E} ,
L,=Ly+2ak’E}, (15)

and Q=2upB. These forms of L, and L, differ from those
of the purely TE case [8-12] in the appearance of the
term, with the following effect: the present L, and u, re-
spectively, play the role of L, and v in Refs. [8-12], and
likewise, here, L, and v play the role of L, and u in
[8-12]. The crucial difference is that L, as defined by
(15) has a zero eigenvalue with eigenfunction E, and all
other eigenvalues are negative, but L, is negative definite.
While details are exiled to the Appendix, it can be shown
that, accordingly, Q (and therefore the growth rate y) is
purely imaginary, which implies that E|, is stable to per-
turbations e, and e,.

From a physical perspective, the } factor means that
the nonlinearity acting upon the perturbations e, and e,
is only one third of that acting upon 8e, (which is a per-
turbation in the same polarization as the E, mode) and
hence not large enough to influence stability. Thus small
perturbations in the x and z polarization do not grow
with propagation distances, indicating that weak TM
waves can be guided by strong nonlinear TE modes.

IV. TM GUIDED WAVES

Stationary TM waves have e, =0, and the dominant
component is e,. In analogy to E(x), we let Ej(x) and
Ef(x) (which are 7/2 out of phase) denote the two com-
ponents of a TM mode, de,, Se,, respectively, be pertur-
bations to these components, and e, is regarded as a
small perturbation in the y polarization.

For de,, de,, the governing equations are
Le, +ak?| EZ|*(28e, +8eX)
+1ak?|E}|%(28e, —8ef)=0, (16)
Lbe,+ak? E3|*(28e,+8e*)
+1lak?|E}|%(28e,—8e})=0, (17

which do not involve e,; while for e,
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Le,+Lak’E}(2e,+e})=0 . (18)

It is often the case that Ej is larger than Ej by an or-
der of magnitude or more [4] so that the last term of Eq.
(16) and the second term of (17) can be ignored. This
would then lead to the well-studied Eq. (11) or Eq. (12)
discussed above. Even if E{ can not be ignored, the im-
portant fact is that Egs. (16) and (17) do not involve e,
(and we make no attempt to study them here), and hence

polarization stability is determined entirely by Eq. (18).
Since Eq. (18) is identical to (12), the same conclusion is
reached: TE perturbations do not affect the stability of
TM guided modes.

It should be mentioned that this conclusion is for TE,
and TM, modes only, because for higher-order modes L,
can have positive as well as negative eigenvalues, indicat-
ing that growth rates can be complex [12].

V. CONCLUSION

We have established that, in nonlinear planar optical
guiding structures, TE guided waves are stable to TM
perturbations, and vice versa, TM guided waves are
stable to TE perturbations. These results indicate that in
practice, it may be possible to excite and propagate TE
and TM guided waves over long distances in nonlinear
planar waveguides. The fact that small perturbations in
directions other than that of a nonlinear mode do not
grow is consistent with a recent work by Boardman et al.
in Ref. [6] which shows that stationary coupled TE-TM
waves are possible in nonlinear planar structures.

APPENDIX

The following derivation is similar to that of Koloko-
lov in Refs. [8] and [11] with a few minor modifications,
and is given here only for the sake of convenience of
reference.

Let (g,,8,) be defined as

(gl,g2>=f_wgfgzdx

for continuous functions g, g, which decay at x =+ .
Since L,Lyv=—0Q% and L,E,=0 (as E, is a nonlinear
mode), we have

—0%v,Ey)=(L,Lqv,Ey)={v,LyL,E;)=0,

i.e., v is orthogonal to E,. Also, one can write

2

{v,Lov) A (say)
=————=A (say) .

(v,L{W) Y
In the function space orthogonal to E,, {v,L 'v) is neg-

ative definite, and the stability of E, depends on the sign
of the maximum value of {v,Lyv ). If this sign is nega-
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FIG. 1. Schematic behavior of f(a)=3,lc;|*/(A;—a).

tive, then ) is purely imaginary and E| is stable. Other-
wise, it is unstable.

To determine the maximum of {v,Lgv ), the method of
Lagrangian multipliers can be employed in which a func-
tional

f=(v,Lov)—alv,v)—b({v,Ey)+{Eyv))

is formed, where a and b are the undetermined multi-

pliers. Taking the first variation of f with respect to v

gives
Lyv=av+bE, , (AD

from which @ =(v,L,v ) whose maximum is what we re-
quire. Let

v=Y aqw;, Eq=3 co;,
i i

where w; are the eigenfunctions (with corresponding ei-
genvalues A;) of L,, (A1) becomes

S aro,=ay aw;,+b Y co;
i i i

and, therefore,

_ be _ bc;
L wii e Y we
Thus,
blc;|?
(Ep,v)=0=3 =bf(a) (say) .

A;i—a

The schematic behavior of f(a) is shown in Fig. 1 in
which A, and A; are the first two singularities. It
is obvious that the maximum value of a, denoted
by ap.. satisfies A,<a,, <Ay, But since Ly=L,
—%nzsz% (n,>0) and L, has no positive eigenvalues,
all eigenvalues of L, including A, and A, must be nega-
tive. Hence the maximum value of a ={v,Lyv ) satisfy-
ing f (a)=0 must also be negative.
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